
Validation of Contracts using
Enabledness Preserving Finite State Abstractions

Guido de Caso∗ Víctor Braberman∗

Diego Garbervetsky∗ Sebastián Uchitel∗†

∗ Departamento de Computación, FCEyN, UBA. Buenos Aires, Argentina
† Department of Computing, Imperial College. London, UK

ICSE 2009, Vancouver, Canada

Why contracts?

Software contracts (pre/postconditions, invariant,...) appear in
a variety of places:

As a form of early speci�cation: Z, �DbC� technique.

As annotations for analysis tools: Spec#, JML for ESC/Java.

As the output of analysis tools: Daikon, DySy.

But understanding contracts is far from being straightforward...

Contracts are hard to validate

contract CircularBu�er

variable a : array [element]
variable w, r : integer

invariant : 0 ≤ r < |a| ∧ 0 ≤ w < |a| ∧ |a| > 3

start : |a| > 3 ∧ r = |a| − 1 ∧ w = 0

action write (element e)
pre : w < r − 1 ∨ (w = |a| − 1 ∧ r > 0)
post : r ' = r ∧ w' = (w + 1) % |a| ∧ a' = store(a, w, e)

action element read()
pre : r < w − 1 ∨ (r = |a| − 1 ∧ w > 0)
post : a' = a ∧ w' = w ∧ r ' = (r + 1) % |a| ∧ rv = a[r ']

Figure: Pre/post speci�cation for a circular bu�er

The abstraction we construct

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: CircularBu�er contract abstraction

Understanding the CircularBu�er contract

|a|-3 |a|-2 |a|-1 0 1

... ...

r w

Figure: Empty CircularBu�er

|a|-3 |a|-2 |a|-1 0 1

... ...

w r

Figure: Full CircularBu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a)

Figure: Simulating the circular bu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a)

Figure: Simulating the circular bu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a) write(b)

Figure: Simulating the circular bu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a) write(b) write(c)

Figure: Simulating the circular bu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a) write(b) write(c) read(a)

Figure: Simulating the circular bu�er

What else can we do?

Prove properties:

Can I read from a newly created bu�er?
Can I read twice from a bu�er where I've just written twice?
...

Problem: When do we stop?

Perform simulations:

write(a) write(b) write(c) read(a)

Figure: Simulating the circular bu�er

Problem: When do we stop?

write(a)

write(b) write(c)

write(a)

write(b)

write(c)
read(a)

write(a)

write(b)

write(c)read(b)

write(a)
write(b)write(c)

read(c)

write(a)
write(b)write(c)

read(a)

write(a)
write(b)

write(c)
read(a)

write(a)
write(b)

write(c)
read(a)

write(a)write(b)write(c)

write(a)write(b)write(c)
read(b)

write(a)
write(b)

write(c)
read(b)

write(a)
write(b)
write(c)
read(b)

write(a)
write(b)
write(c)

write(a)
write(b)

write(c)read(c) write(a)
write(b)write(c)read(c)

write(a)
write(b)
write(c)read(c)

write(a)

write(b)
write(c)

Simulation is like using a torch light

Figure: It's dark...

Simulation is like using a torch light

Figure: It's dark, we see some lights...

Simulation is like using a torch light

Figure: It's dark, we see some lights, a fountain...

Abstraction is like a pixelized view

Figure: It looks familiar!

Abstraction is the key, but how?

In order to produce an FSM that abstracts the CircularBu�er
contract we must deal with:

Potentially in�nite parameter values.

A non-regular underlying language.

Precision vs. size (when validating)

We have to be careful when abstracting and...

avoid creating a lot of states (even in�nite) by trying to reduce
spurious behaviour.

avoid creating a trivial abstraction with very few states that
produces way too much spurious behaviour.

Abstraction is the key, but how?

In order to produce an FSM that abstracts the CircularBu�er
contract we must deal with:

Potentially in�nite parameter values.

A non-regular underlying language.

Precision vs. size (when validating)

We have to be careful when abstracting and...

avoid creating a lot of states (even in�nite) by trying to reduce
spurious behaviour.

avoid creating a trivial abstraction with very few states that
produces way too much spurious behaviour.

Enabledness

We need a way to get the �pixelized view� of a contract.

Enabledness equivalence

We say two variable valuations are enabledness-equivalent if they
allow the same set of actions to occur.

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: Enabledness equivalence based abstraction

Enabledness

We need a way to get the �pixelized view� of a contract.

Enabledness equivalence

We say two variable valuations are enabledness-equivalent if they
allow the same set of actions to occur.

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: Enabledness equivalence based abstraction

Enabledness

We need a way to get the �pixelized view� of a contract.

Enabledness equivalence

We say two variable valuations are enabledness-equivalent if they
allow the same set of actions to occur.

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: Enabledness equivalence based abstraction

Formalizing contracts

We say C is a contract i� C = 〈V , inv, init, A, P, Q〉:

Finite set of variables V

System invariant inv ∈ P (V)

Initial predicate init ∈ P (V)

Finite set of action labels A = {a1, . . . , an}
Preconditions P : A→ P (V ∪ {p})

Where p is the (only) action parameter.

Postconditions Q : A→ P (V ∪ V ′ ∪ {p})
Where v ′ denotes the value of v after execution.

Where P (X) stands for the set of �rst order logic predicates with free variables in X .

Constructing contract abstractions: states

Enabledness-preserving Contract Abstraction (part 1 of 3)

An FSM M = 〈S , S0, Σ, δ〉 is an enabledness-preserving contract

abstraction of C = 〈V , inv, init, A, P, Q〉 i�:
1 The set of states is the powerset of actions: S = 2A

{write} {write,read}write {read}readwrite,read
write,read

write,read

{} lala

Figure: We use sets of enabled actions as states

Constructing contract abstractions: state invariants

State invariant

A state s ⊆ A abstracts system instances on which the enabled
actions are exactly s, characterized by the state invariant invs .

invs
def
= inv ∧

∧
a∈s
∃p. Pa ∧

∧
a/∈s

@p. Pa

{write} {write,read}write {read}readwrite,read
write,read

write,read

lala

Figure: We can discard a state s if invs is inconsistent.

Constructing contract abstractions: initial states

Enabledness-preserving Contract Abstraction (part 2 of 3)

An FSM M = 〈S , S0, Σ, δ〉 is an enabledness-preserving contract

abstraction of C = 〈V , inv, init, A, P, Q〉 i�:
2 The set of initial states is:

S0 = {s | init⇒ invs}

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: Initial sets are those implied by the initial predicate

Constructing contract abstractions: transitions

Enabledness-preserving Contract Abstraction (part 3 of 3)

An FSM M = 〈S , S0, Σ, δ〉 is an enabledness-preserving contract

abstraction of C = 〈V , inv, init, A, P, Q〉 i�:
3 The alphabet is the set of action labels

Σ = A

4 The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

(The last item is relaxed due to decidability issues.)

Constructing contract abstractions: transitions

Enabledness-preserving Contract Abstraction (part 3 of 3)

An FSM M = 〈S , S0, Σ, δ〉 is an enabledness-preserving contract

abstraction of C = 〈V , inv, init, A, P, Q〉 i�:
3 The alphabet is the set of action labels

Σ = A

4 The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

(The last item is relaxed due to decidability issues.)

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Constructing contract abstractions: transitions

The transition function δ : 2A × A→ 22
A
satis�es

δ(s, a) = ∅ if a /∈ s

δ(s, a) ⊇ {s ′ | invs ∧ Qa ∧ inv′s′ is satis�able} if a ∈ s

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: We add transitions

Validation begins!

{write} {write,read}write {read}
readwrite,read

write,read

write,read

Figure: Finished CircularBu�er contract FSM

What went wrong?

Invariant of state {write, read}

(w < r − 1 ∨ (w = |a| − 1 ∧ r > 0)) ∧ (r < w − 1 ∨ (r = |a| − 1 ∧ w > 0))

This is consistent with this position of r and w :

i-2 i-1 i i+1 i+2

... ...

w r

Figure: CircularBu�er with equal pointers

And from this position we can:

Apply read() and go to a full bu�er state.

Apply write(e) and go to an empty bu�er state.

What went wrong?

Invariant of state {write, read}

(w < r − 1 ∨ (w = |a| − 1 ∧ r > 0)) ∧ (r < w − 1 ∨ (r = |a| − 1 ∧ w > 0))

This is consistent with this position of r and w :

i-2 i-1 i i+1 i+2

... ...

w r

Figure: CircularBu�er with equal pointers

And from this position we can:

Apply read() and go to a full bu�er state.

Apply write(e) and go to an empty bu�er state.

What went wrong?

Invariant of state {write, read}

(w < r − 1 ∨ (w = |a| − 1 ∧ r > 0)) ∧ (r < w − 1 ∨ (r = |a| − 1 ∧ w > 0))

This is consistent with this position of r and w :

i-2 i-1 i i+1 i+2

... ...

w r

Figure: CircularBu�er with equal pointers

And from this position we can:

Apply read() and go to a full bu�er state.

Apply write(e) and go to an empty bu�er state.

What did go wrong?

Remember the CircularBu�er contract:

contract CircularBu�er

variable a : array [element]
variable w, r : integer

invariant : 0 ≤ r < |a| ∧ 0 ≤ w < |a| ∧ |a| > 3
...

The contract omitted saying that r 6= w is part of the invariant!

The enabledness-preserving abstraction helped us to �nd this bug.

What did go wrong?

Remember the CircularBu�er contract:

contract CircularBu�er

variable a : array [element]
variable w, r : integer

invariant : 0 ≤ r < |a| ∧ 0 ≤ w < |a| ∧ |a| > 3
...

The contract omitted saying that r 6= w is part of the invariant!

The enabledness-preserving abstraction helped us to �nd this bug.

Fixed CircularBu�er abstraction

Adding r 6= w to the speci�cation yields:

{write} {write,read}write {read}
readread
write

write,read

Figure: Finite abstraction of the amended CircularBu�er contract

This abstraction is an intuitive representation of a bu�er:

One state abstracts all the bu�ers that are empty.

Other state abstracts all the bu�ers that are partially full.

The last state abstracts all the bu�ers that are full.

Tool support

We implemented a tool called Contractor:

Contract
Contractor

Tool
Contract

abstraction

CVC3 Yices

Contractor is open source and available at
http://lafhis.dc.uba.ar/contractor

Case studies

Using our Contractor tool we were able to carry out a series of case
studies, including:

Name Source Number of actions Running time

Web fetcher
DeLine and Fahndrich

(ECOOP 2004)
4 0.14 seconds

ATM
Whittle and Schumann

(ICSE'00)
8 8 seconds

MS-NSS Microsoft 13 67 seconds

MS-WINSRA Microsoft 33 ?

Today I will focus on the third one.

The .NET NegotiateStream protocol speci�cation v2.01

.NET NegotiateStream Protocol basics

A protocol for the negotiation of credentials between a client and a
server over a TCP stream:

1 The client requests a desired level of security (e.g. encryption).

2 On a �rst phase a token is passed between the 2 sides.

3 When a special �nalization token is received by the client, the
second phase starts.

4 During the second phase data is exchanged using the agreed
security level.

1http://msdn.microsoft.com/en-us/library/cc236723.aspx

Document in version 2.0 during August 2008

Experimental setup

Protocol
specification

natural
language

+ diagrams

formal
languageextraction

Contract

Contractor
Tool

FSM

Contract
abstraction

feedback

1)
2) ...
3) validation

Suspicious
behaviour

check for
errors

Figure: How the Contractor tool was used

Experimental setup

Protocol
specification

natural
language

+ diagrams

formal
languageextraction

Contract

Contractor
Tool

FSM

Contract
abstraction

feedback

1)
2) ...
3) validation

Suspicious
behaviour

check for
errors

Figure: How the Contractor tool was used

Experimental setup

Protocol
specification

natural
language

+ diagrams

formal
languageextraction

Contract

Contractor
Tool

FSM

Contract
abstraction

feedback

1)
2) ...
3) validation

Suspicious
behaviour

check for
errors

Figure: How the Contractor tool was used

.NET NegotiateStream �nite contract abstraction

S1 S2
openTCP

S10

closeTCP

S3gssInitSec

S4
gssInitSec

S5
gssInitSec

closeTCP

S7
sndInProgress

closeTCP

S6

sndDone

closeTCP, sndError

sndError

closeTCP, rcvError

rcvInProgress, rcvError

S8

rcvDone

S9

rcvDone

closeTCP, rcvError

rcvError
rcvDone

rcvDone

closeTCP
sndData, rcvData

closeTCP, sndFData, rcvFData

sndFData, rcvFData

︸︷︷︸
Init

︸ ︷︷ ︸
1st phase

︸ ︷︷ ︸
2nd phase

︸︷︷︸
Deadlock

Figure: Finite abstraction of the .NET NegotiateStream protocol contract

.NET NegotiateStream �nite: Suspicious behaviour (i)

S1 S2
openTCP

S10

closeTCP

S3
gssInitSec

S4
gssInitSec

S5
gssInitSec

closeTCP

S7
sndInProgress

closeTCP

S6

sndDone

closeTCP, sndError

sndError

closeTCP, rcvError

rcvInProgress, rcvError

S8

rcvDone

S9

rcvDone

closeTCP, rcvError

rcvError
rcvDone

rcvDone

closeTCP
sndData, rcvData

closeTCP, sndFData, rcvFData

sndFData, rcvFData

Figure: What happens when error messages occur?

Level of abstraction comparison

S1 S2
openTCP

S10

closeTCP

S3gssInitSec

S4
gssInitSec

S5
gssInitSec

closeTCP

S7
sndInProgress

closeTCP

S6

sndDone

closeTCP, sndError

sndError

closeTCP, rcvError

rcvInProgress, rcvError

S8

rcvDone

S9

rcvDone

closeTCP, rcvError

rcvError
rcvDone

rcvDone

closeTCP
sndData, rcvData

closeTCP, sndFData, rcvFData

sndFData, rcvFData

These diagrams are not consistent... but why?

.NET NegotiateStream �nite: Suspicious behaviour (ii)

S1 S2
openTCP

S10

closeTCP

S3gssInitSec

S4
gssInitSec

S5
gssInitSec

closeTCP

S7
sndInProgress

closeTCP

S6

sndDone

closeTCP, sndError

sndError

closeTCP, rcvError

rcvInProgress, rcvError

S8

rcvDone

S9

rcvDone

closeTCP, rcvError

rcvError rcvDone

rcvDone

closeTCP
sndData, rcvData

closeTCP, sndFData, rcvFData

sndFData, rcvFData

Figure: This FSM deadlocks if composed with the client informal diagram

.NET NegotiateStream �nite: Findings

The ambiguities found in the protocol contract abstraction were
tracked down in the protocol speci�cation document.

The mentioned errors were corrected in the subsequent o�cial
protocol speci�cation.

Contributions

Theoretical

We formalised the concept of enabledness-based �nite
behavioural contract abstractions.

We provided a novel symbolic algorithm to get such
abstractions.

Practical

We showed their potential validation capacity.

We implemented our algorithm as a practical tool and used it
on a variety of contracts.

We discovered inconsistencies or omissions in real-life
speci�cations.

Contributions

Theoretical

We formalised the concept of enabledness-based �nite
behavioural contract abstractions.

We provided a novel symbolic algorithm to get such
abstractions.

Practical

We showed their potential validation capacity.

We implemented our algorithm as a practical tool and used it
on a variety of contracts.

We discovered inconsistencies or omissions in real-life
speci�cations.

Current and future work

Scalability We're working on an on-the-�y multi-threaded
algorithm.

Precision We would like to distinguish transitions depending on
whether they are always traversable or not.
Modalities.

Analysability Add simulation support to the tool, together with
visual aids such as a hierarchical view of states or
decomposition into smaller FSMs.

Current and future work

Scalability We're working on an on-the-�y multi-threaded
algorithm.

Precision We would like to distinguish transitions depending on
whether they are always traversable or not.
Modalities.

Analysability Add simulation support to the tool, together with
visual aids such as a hierarchical view of states or
decomposition into smaller FSMs.

Current and future work

Scalability We're working on an on-the-�y multi-threaded
algorithm.

Precision We would like to distinguish transitions depending on
whether they are always traversable or not.
Modalities.

Analysability Add simulation support to the tool, together with
visual aids such as a hierarchical view of states or
decomposition into smaller FSMs.

Related work (i): predicate abstraction

Sun and Dong2.
Construction of states using predicates from LSCs and
transitions using pre/postconditions.

Grieskamp, Kicillof and Tillmann3. Nebut, Fleurey, Le
Traon and Jézéquel4. Leuschel and Butler5.
Exploration of a contract state space symbollicaly or
concretely but no intention to construct a �nite abstraction.

Van, van Lamsweerde, Massonet and Ponsard6.
Construction of a contract �nite abstraction by imposing
bounds to the data domains.

2
Design synthesis from interaction and state-based speci�cations, TSE 2006

3
Model-based quality assurance of Windows protocol documentation, ICST 2008

4
Automatic test generation: a use case driven approach, TSE 2006

5
ProB: an automated analysis toolset for the B method, STTT 2008

6
Goal-oriented requirements animation, RE 2004

Related work (ii): other techniques

Lee and Yannakakis7. Tripakis and Yovine8.
Minimisation of LTSs by stabilising state space partitions.
Requiring pre-stability may end up in huge or even in�nite
LTSs in our setting.

Alur, Cern, Madhusudan and Nam9.
Conservative construction of �nite behaviour models out of
Java code. By avoiding exception raising the result is too
restrictive when the system language is non-regular.

Gabel and Su10.
Mining of �nite state automata out of execution traces.

Letier, Kramer, Magee, Uchitel11.
Construction of FSMs out of pre/post speci�cations.
Language is propositional and there is no abstraction.

7
Online minimization of transition systems, ACM Symposium on Theory of Computing 1992

8
Analysis of Timed Systems Using Time-Abstracting Bisimulations, FMSD 2001

9
Synthesis of interface speci�cations for Java classes, POPL 2005

10
Symbolic mining of temporal speci�cations, ICSE 2008

11
Deriving event-based transition systems from goal-oriented requirements models, JASE 2008

Thank you!

Gracias

Grazie

Danke

Obrigado

Xie xie

Merci

Kamsahamnida

Toda

Shukran

Arigato

...

	Why validation of contracts?
	Getting finite contract abstractions
	Case studies
	Final thoughts
	Related work

